

FreqDebias: Towards Generalizable Deepfake Detection via Consistency-Driven Frequency Debiasing

Hossein Kashiani, Niloufar Alipour Talemi, Fatemeh Afghah

Motivation

Why Do Deepfake Detectors Fail to Generalize?

- > Existing detectors exhibit poor cross-domain performance due to model bias.
- > Detectors rely on **spurious correlations** such as identity, background, or structural artifacts.
- > Prior works focus on human-perceptible biases, while this work investigates a form of model bias that is **imperceptible** to humans, known as spectral bias in the frequency domain.

Key Insights

What is Spectral Bias?

- > Detectors over-rely on dominant frequency components, which are specific to forgery types.
- > These components are identified as frequency bands whose exclusion causes the largest increase in classification loss.
- > Such reliance limits generalization to unseen forgeries.

Dominant frequency components overly relied upon by the vanilla deepfake detector.

Face2Face NeuralTextures

Proposed Framework: FreqDebais

Forgery Mixup Augmentation:

- > Identifies dominant frequency components and modulates the amplitude spectra within these components.
- Filters low-confidence augmented samples using Shannon entropy. $x_{ij} = \mathcal{F}^{-1} \left[\left(p_{\mathcal{A}} \otimes \hat{\mathcal{A}}(x_{ij}) \right) * e^{-i * \mathcal{P}(x_i)(u,v)} \right]$

Dual Consistency Regularization:

- > Local Consistency: Enforced via Class Activation Maps (CAMs) to maintain attention on discriminative regions.
- Global Consistency:

$$L_{att} = D_{JS} \Big(\sigma \big(M^{cn}(x^s); \tau \big), \sigma \big(M^{cn}(x^t); \tau \big) \Big)$$

 $L_{total} = L_{cls} + \eta L_{CAM} + \delta L_{att} + \mu L_{cls_sphere} + \rho L_{sphere}$

- ✓ Model facial features on a hyperspherical embedding space using von Mises-Fisher (vMF) distribution.
- \checkmark Enforce domain alignment using the Distribution Matching Score: DMS = $1/(1 + D_{KL}(p(\tilde{F}_{cat}^s \mid \kappa_s, \tilde{\mu}_s), p(\tilde{F}_{cat}^t \mid \kappa_t, \tilde{\mu}_t)))$

$$L_{sphere} = \mathbb{E}\left[1 - \text{DMS}(\boldsymbol{F}_{cat}^{s}, \boldsymbol{F}_{cat}^{t})\right]$$

Experimental Results

In-domain and Cross-domain Results

Method	In-domain	Cross-domain						
	FF++	CDFv1	CDFv2	DFD	DFDCP	DFDC	C-Avg.	
Xception [10]	96.4	77.9	73.7	81.6	73.7	70.8	75.54	
Meso4 [4]	60.8	73.6	60.9	54.8	59.9	55.6	60.96	
Capsule [40]	84.2	79.1	74.7	68.4	65.7	64.7	70.52	
X-ray [31]	95.9	70.9	67.9	76.6	69.4	63.3	69.62	
FFD [11]	96.2	78.4	74.4	80.2	74.3	70.3	75.52	
F3Net [46]	96.4	77.7	73.5	79.8	73.5	70.2	74.94	
SPSL [36]	96.1	81.5	76.5	81.2	74.1	70.4	76.74	
SRM [38]	95.8	79.3	75.5	81.2	74.1	70.0	76.02	
CORE [41]	96.4	78.0	74.3	80.2	73.4	70.5	75.28	
RECCE [5]	96.2	76.8	73.2	81.2	74.2	71.3	75.34	
SLADD [6]	96.9	80.2	74.0	80.9	75.3	71.7	76.42	
IID [24]	97.4	75.8	76.9	79.3	76.2	69.5	75.54	
UCF [63]	97.1	77.9	75.3	80.7	75.9	71.9	76.34	
LSDA [65]	_	86.7	83.0	88.0	81.5	73.6	82.56	
FreqDebias (Ours)	97.5	87.5	83.6	86.8	82.4	74.1	82.88	

Cross-manipulation Results

Methods	Train	DF	F2F	FS	NT		
GFF [38]		99.87	76.89	47.21	72.88		
DCL [52]		99.98	77.13	61.01	75.01		
IID [24]	DF	99.51	-	63.83	-		
SFDG [59]		99.73	86.45	75.34	86.13		
FreqDebias (Ours)		99.82	88.10	75.92	88.45		
GFF [38]		89.23	99.10	61.30	64.77		
DCL [52]	F2F	91.91	99.21	59.58	66.67		
SFDG [59]		97.38	99.36	73.54	72.61		
FreqDebias (Ours)		98.41	99.44	74.37	76.46		
GFF [38]		70.21	68.72	99.85	49.91		
DCL [52]	FS	74.80	69.75	99.90	52.60		
IID [24]		75.39	-	99.73	_		
SFDG [59]		81.71	77.30	99.53	60.89		
FreqDebias (Ours)		83.76	78.93	99.78	63.48		
GFF [38]		88.49	49.81	74.31	98.77		
DCL [52]	NT	91.23	52.13	79.31	98.97		
SFDG [59]		91.73	70.85	83.58	99.74		
FreqDebias (Ours)		92.35	74.61	83.24	99.83		

Experiments

In-Domain and Cross-Domain Evaluations:

> Trained on FF++ (HQ); Evaluated on CDFv1, CDFv2, DFDC, DFDCP, DFD.

Cross-Manipulation Evaluations:

> Trained on one manipulation type of FF++ (e.g., DF) and tested on others.

Robustness Evaluations:

Evaluated on six distortion types from LipForensics benchmark.

Different Backbones

Model	CD	Fv2	DFDCP					
	AUC	EER	AUC	EER				
ResNet-50	83.9	23.7	82.9	25.7				
ConvNeXt	85.1	22.6	83.4	25.3				

Robustness Results

Model	Saturation	Contrast	Block	Noise	Blur	Pixel	Avg
Face X-ray [31]	97.6	88.5	99.1	49.8	63.8	88.6	81.2
LipForensices [20]	99.9	99.6	87.4	73.8	96.1	95.6	92.1
RealForensics [21]	<u>99.8</u>	<u>99.6</u>	98.9	79.7	95.3	98.4	95.2
CADDM [13]	99.6	99.8	99.8	<u>87.4</u>	99.0	98.8	<u>97.4</u>
FreqDebias (Ours)	99.6	99.8	<u>99.7</u>	89.2	<u>98.2</u>	99.1	97.6

Visualizations

> Standard forgery-specific dominant frequency reliance. Fo-Mixup targets this bias.

Conclusion

- > Spectral Bias: We identify an unexplored form of model bias in deepfake detection.
- > Fo-Mixup: We propose Fo-Mixup to broaden detector's exposure to a diversified frequency spectrum.
- > FreqDebias: We propose FreqDebias, which first diversifies the frequency spectrum, and then enforces both local (CAMs) and global (vMF) consistency.
- **Experiments:** We demonstrate that FreqDebias significantly improves generalization across cross-domain and robustness settings.

Acknowledgment: This material is based upon work supported by the National Science Foundation under Grant Numbers CNS2232048, and CNS-2204445.