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(SB) p y y The proposed AAI module has two sequential sub-modules which are channel and spatial attention, respectively. . The proposed architecture, not only predicts the SB

main task to improve the performance of our FR model

_ _ _ Given two feature maps, Frrpand Fsg, the channel-based integration weight, M., is computed from the multi-scale
In challenging scenarios.

channel sub-module and then this integration weight will be multiplied by the Fr, feature (i.e., Frr X M,). However,
when it comes to the other feature map, Fsg, the complementary value of the integration weight will be multiplied by
the Fgp feature (i.e., Fsg X (1 — M,)). Then, the channel-based weighted averaging between Frr and Fqg Will be given
as input to the multi-scale spatial sub-module. Similar to the channel sub-module, spatial-based weighted averaging
will be computed between Frr X M.and Fsg X (1 — M,).

attributes and simultaneously identifies face images

but also utilizes SB attributes as auxiliary
Information to improve the performance of our FR
model.

 To utilize facial attributes to enhance the performance
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Table 1: Classification comparison in terms of accuracy (%)
between the proposed SB predictor and the SOTA methods on the
CelebA dataset.

Table 2: Performance comparison of our proposed method (AAFace) with

: : : recent SOTA FR methods. TAR is reported at FAR = 0.01%.
« To effectively leverage SB information for FR, we P

adopt a feature-level integration strategy through our
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